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Abstrae~A turbulent quasi-stabilized flow in a fiat channel with uniform injection is considered. Results 
are presented from calculations carried out on the basis of equations from the theory of the Kutateladze 
and Leontiyev limiting laws modified to include the effect of the longitudinal pressure gradient originating 
in such kind of flow. Based on these results a dependence of the relative friction factor on the injection 
parameter has been suggested. In addition, approximating formulae, that generalise the familiar solutions, 

are presented for calculating the longitudinal velocity profiles and longitudinal pressure distribution. 

Consideration is given to a quasi-stabilized isothermal 
incompressible turbulent flow in a channel with homo- 
geneous uniform (along its length) external medium 
injection through the channel walls. The inflow of 
extra mass to the channel causes the appearance of a 
longitudinal favourable pressure gradient, the larger 
the value of which, the higher the rate of injection. The 
originating pressure gradient exerts a marked effect on 
flow characteristics and it should be taken into 
account already for Vw/Uo ,~ 0.006 [1, 2]. It is worth 
noting that, in contrast to the problem of external 
flow past a wall with injection, where a longitudinal 
pressure distribution is assumed, in the case con- 
sidered it is the unknown function which depends on 
both the intensity of the injection through the walls 
and the flow being formed. Another special feature of 
the channel with injection is the presence of a trans- 
verse velocity component which grows with injection 
intensity. The effect of this velocity must be taken into 
account when selecting a turbulence transfer model 
[3]. The indicated features significantly complicate the 
problem, and hamper the extension of computational 
methods generally developed for the problem of exter- 
nal flow past a wall with injection to the internal 
problem, i.e. a channel flow with injection. 

As with any physical process, the study of channel 
flow with injection raises the problem of its governing 
criteria. According to the approximate analysis given 
by the present author in ref. [4], for quasi-stabilized 
turbulent channel flow with uniform injection such 
governing criteria are : the relative velocity of injection 
I"~/G or Vw/Uo and the Reynolds number -Uh/v .  
With these criteria taken into account, all of the 
presently available methods of calculation can be 
divided into two groups. The first group comprises 
solutions obtained on the basis of Navier-Stokes 
equations assuming that # = 0. These solutions give 
an adequate description of experimental results in the 

case of a high relative velocity of injection when the 
viscosity effect turns out to be small in comparison 
with the effect of injection and of the accompanying 
pressure gradient [5]. The viscosity effect grows with 
a decrease in injection intensity and becomes the gov- 
erning one when V w / G ~ O .  Correspondingly, with 
low injection velocity the problem is solved under the 
boundary layer approximation while the injection and 
pressure gradient parameters are considered to be 
small [3]. 

Thus, by now, solutions have been found for high 
and low levels of injection. The problem of moderate 
injection has not yet been studied adequately (as well 
as the very definition of injection degrees). The present 
author is aware of only one such work [3] dealing with 
this problem. Unfortunately, the approach employed 
in ref. [3] and the relations obtained, e.g. ~ = qJ(b), 
where b = (2/Cfo)(Vw/Uo), are rather complicated for 
direct application due to the fact that Uo is the 
unknown function of x. In this work an attempt has 
been made to solve the problem by a simpler method 
based on the theory of limiting laws [6]. A simple 
closed system of relations is presented which makes it 
possible to predict the major features of the flow. 

The theory of limiting laws has been developed for 
a boundary layer. In the case of non-gradient flow on 
a plate with injection it describes the distribution of 
velocity ~o and friction function ff depending on the 
parameter b within the range b ~< bkr, i.e. up to the 
point of displacement. In a non-gradient flow and 
with Re ~ ~ the value of bkr is equal to 4. This cor- 
responds to Vw/Uo ~ 0.01. In the presence of the 
favourable pressure gradient the bkr value increases 
[7]. In channel flows the attendant favourable pressure 
gradient turns out to be so significant that the dis- 
placement effect does not appear at all. This con- 
clusion follows from the "non-viscous' solution 
characteristic for strong injections and justifies the 
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b injection parameter 
Cf friction factor 
2h channel height 
P static pressure 
Re Reynolds number, 2lYh/v 
u, v longitudinal and transverse velocity 

components 
U0, l_7 maximum longitudinal velocity and 

longitudinal velocity averaged over the 
channel transverse cross-section 

/-70 mean flow velocity at porous channel 
inlet 

x, y longitudinal and transverse 
coordinates. 

NOMENCLATURE 

r shearing stress under given and 
standard (denoted by subscript 0 
and taken in an impermeable 
smooth channel) conditions, 

ratio of friction factors under given 
and standard (denoted by subscript '0' 
and taken in an impermeable smooth 
channel) conditions, C/C: 
local velocity under given and 
standard (in an impermeable 
smooth channel) conditions, 
u/U, , ,~o= (u/Uo),,. 

Greek symbols 
r/ non-dimensional transverse 

coordinate, y/h 
2 pressure gradient parameters 

(h/rw)(dP/dx); 20 = 2+  1 
/~, v dynamic and kinematic viscosities 
p density 

Subscripts 
k, r parameters at the point of flow 

displacement away from the wall in 
critical injection 

n values associated with transition to 
~non-viscous' flow regime 

w conditions at the wall. 

application of the theory of limiting laws to channel 
flows with injection when Vw/Uo> 0.01. 

The governing equations of the limiting theory have 
been written with allowance for the fact that the rep- 
resentative parameter of the channel flow is the Reyn- 
olds number based on the mean flow velocity. The 
flow was assumed to be two-dimensional (rectangular 
channel) and stabilized, and the transverse velocity 
to be negligibly small. Specific features of the flow 
attributable to the shape of the channel cross-section 
were considered by this author in ref. [4]. Under the 
assumptions made, equations for determining the fric- 
tion function and velocity profile can be written in the 
form : 

x/O = f l  x/~°/~ do,  

Here, ~Oo is the velocity profile in an impermeable 
channel at the considered Re value. By analogy with 
the known approximations [6], for shearing stress dis- 
tributions it is assumed that : 

= ( 1 - t t ) + ( 2 o q + b , f l o ) ) ( l - q ) ,  

?= l - t  1 fl = (Uo/U) 2. (2) 

Approximation of equation (2) satisfies the following 
conditions : 

=~o at bj = 0  2 o = 0 ,  

~ l+2r/+b~fl~o for r / ~ 0 .  

As noted above, the value of the negative pressure 
gradient originating in channels with injection 
depends on the injection intensity at the wall. Accord- 
ingly, the parameters 2 and bd3 entering into the 
expression for ~ are not independent. 

With the known relation between 2 and bdL the 
system of equations (1) simplifies and becomes one- 
parametric. In the present work, the quantity b~fl has 
been taken as an independent parameter, and the 
relation between 2 and b~fl has been obtained from the 
expression for static pressure distribution in a channel 
with injection, according to which : 

dP rw _d/_7 
dx h ~_ppU~x,O (3) 

where in the case of uniform injection through the 
walls 

t7 = tY,, + Vw(x/h). 

Relation (3) correlates the solutions obtained by 
quasi-one-dimensional [6] and two-dimensional [5] 
approaches to the problem at hand, which were valid 
for low- and high- ('non-viscous' flow) level injections, 
respectively. In fact, in the quasi-one-dimensional 
approximation, the equation of motion : 

~u ~u ~z dP 
U ~  +V -- 

:." ~y 9y dx 

integrated over the channel cross-section yields : 

dP rw _ d (..7 
dx = h +kpU dxx' (Y) 

where : 
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Fig. 1. Static pressure distribution along the channel length. 

k = (Uo/G)2f lod~.  

When solving two-dimensional Navier-Stokes equa- 
tions for channel flow with strong injection according 
to ref. [5]: 

dP _d~7 
= ~PU~x. (3") d~ 

The pressure distribution in the form of equation (3) 
for strong injection, when the effect of friction on the 
flow becomes comparatively small (the term zw/h --, 0), 
changes to expression (3"). Simultaneously, it sat- 
isfactorily describes the experimental data of ref. [4] 
and also of ref. [8] (Fig. 1) for small and moderate 
injections and practically coincides with equation (Y). 
The coincidence seems to be attributed to the fact that 
under these conditions the velocity profile is highly 
peaked and the value of the integral ~o~o9 d~ differs 
little from 1. 

From equation (3), after dividing all the terms by 
T~/h, we obtain : 

- - 2  = 1 + b l f l  3'2, (4) 

As calculations have shown, the substitution of equa- 
tion (4) into equation (2) leads to negative shearing 
stresses at values of ~/close to 1. Since z cannot take 
values smaller than zero and fl3/2 ~ fl (the difference 
between these quantities reaches the maximum value 
in a 'non-viscous' flow and does not exceed 23%), 
from equation (4) we obtain : 

- 2  ~ l+b~fl. 

Finally, it gives : 

"? = ( l  --r/)[1 + b t f l ( m - r / ) ] .  (5) 

The distribution of ?, equation (5), is quite well con- 
firmed by the experimental data of ref. [8] (see Fig. 
2). 

With equation (5) taken into account, the system 
of equations (1) allows one to calculate the friction 
function ff and longitudinal velocity distribution o 
from the known co(Re) and fl(Vw/Uo) (or blfl). As seen 
from Figs. 3 and 4, in doing so one can find such pairs 

(1) Equation (5) 
"~. (2) Data of ref. [8] 

4 -- - - - e . , , ;  

2 -- 

L I I 
0 0.2 0.4 0.6 0.8 , .0 

Fig. 2. Shearing stress distribution along the channel height 
at Vw/U,,= 0.007. 

of the values of Re and fl(V, dUo), at which solution 
(1) is close to the solution for a 'non-viscous' flow : 

u/Uo = cos [7t/2(1 - ~/)]. (6) 

The viability of the system of equations (1) was 
checked by calculating the distributions of velocity o 
for the conditions of experiments [1, 9]. The solution 
was sought by an iteration method. It was assumed 
that in the first approximation o~ = ~Oo= q~", i.e. 
coincides with velocity distribution in an impermeable 
channel at a given value of Re; btfl = (2/Cfo)(I~/Uo), 
Cf,,, was calculated by the Blasius law [10]. The values 
of Uo, Vw and [3 were taken from corresponding exper- 
iments. The calculation procedure amounted to the 
following. The value of ~ was calculated from the first 
equation of system (1). To find the distribution of 
velocity o,  the second equation of system (1) was 
written in the form : 

, I n 

1.0 - - ~  

1 I~  

0.5 

/ /  2 / 1 )  Data of ref. [1]: 
~0 ! / Re= 1.4x 104;Vw/U o=0.01 

/ (2) Data of ref. [9]'. 

/ / /  R e = 2 x l 0 6 ;  Vw/U o = 0.06 
, ~  O Calculation by equation 

/ /  (1), corresponds to that 
by equation (6) 

(- ~ )  Approximation (10) 

0 I I 
0.5 1.0 

Fig. 3. Comparison of calculated and experimental Velocity 
profiles in a channel with injection. 
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Fig. 4. Calculated velocity profiles in a channel with injection 
at different Reynolds numbers. 

This expression allows one to find v/i for any assigned 
value of u)i. The function ~oi(v/i) obtained in this way 
was used on the next step in the calculation of ~,, etc. 

In Fig. 3 the calculated results for velocity dis- 
tributions are compared with the experimental data 
of refs. [1, 9]. For  the data of ref. [9], additionally 
the solution for non-viscious fluid, equation (6), was 
plotted, which, in the opinion of the authors of ref. 
[9], correlated the results obtained in their work. From 
Fig. 3 it follows that under the condit ion considered, 
including those for a 'non-viscous'  flow, the calculated 
and experimental velocity distributions closely 
coincide. 

Figure 4 presents calculated profiles corresponding 
to different values of/?(Vw/Uo) for two values of Re. 
Presented there is also relation (6). Using these data, 
the value of/?(Vw/Uo) can be determined which divides 
the regions of viscous and non-viscous flows. As seen 
from Fig. 4, the value of/?(Vw/Uo), at which the flow 
becomes non-viscous depends substantially on the 
value of Re. This value decreases with an increase in 
Re. A similar conclusion can be drawn on the basis of 
numerical investigations [3], according to which the 
value of the complex b, is practically constant. 

The ranges of the parameters within which cal- 
culations of the friction function ~ were conducted 
are: Ree = l a x  104-2.0x 106; [t(V,~/Uo) = 0.002 
0.006. The obtained values of ~ were presented in the 
form : 

2 F,~ 
4' = ~'(b2) b2 - {7) 

Q, u 

The selection of the quanti ty b2 rather than b~fi or 
[3(Vw/Uo) as a correlating parameter was made for the 
convenience of practical application. The coefficient [1 
was attained from the corresponding velocity profile 
predicted from equations (1). 

The calculations have shown (Fig. 5) that in the 
considered range of the Re and [t(V,,/U,,) values, the 
friction functions, presented in the tbrm of the depen- 
dence on the parameter b2, lie on a single curve which 
can be described by the formula : 

Figure 5 also presents a comparison of equation (8) 
with the experimental data of ref. [8] and with the 
results obtained in numerical calculations from the 
suggested by Yeroshenko and Zaichik [3] for Re = 10 4 
and 10 5 and constructed under the assumption that 
b 2 ~ b. It follows from the figure that approximation 
(8) presents a qualitatively true description of exper- 
imental values of 0. The conditions of the "non-vis- 
cous' flow based on calculated data of ref. [3] are 
realized at the values of b2 ~ 7 8 (Fig. 5). According 
to equation (8), in this case the value of I~n iS equal to 

0.1. It should be noted that both the initial system 
of equations (1), and formula (8) obtained on their 
basis hold true only at sufficiently large Reynolds 
numbers. 

1.0 - 

0.8 
(O) Calculation by 

O equation (1) 
0.6 ~ ( ~ ) B y  equation (8) 

0.4 

~t 
t3 

0.8 i (1, 2) Calculation of ref. [3l 
(3) By (8) equation 

0.6 L~Ak (4) By equation (9) 
~ , ~  (,k) Data ofref .  [9]: Re = 105 

0.40.2 ~ ~ 3 ~  1 - . . . . .  Re = 104 

0 ' , i t ,, i ,  i 

2 4 6 8 10 12 
b2 

Fig. 5. Friction function vs injection parameter. 
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Of  some interest is the comparison of  approxi- 
mation (8) with the relation : 

= ( 1 - b 2 / 4 )  2, (9) 

which was obtained in ref. [6] on the basis of  the 
limiting theory for the non-gradient flow conditions. 
F rom equation (5) it is clear that the divergence of  
the curves plotted from equations (8) and (9) becomes 
notable under the effect of  the favourable pressure 
gradient at bz ~ 1.5 ; for b2 < 1.5 the curves practically 
coincide. 

Thus, based on the calculations carried out, it is 
shown that the Kutate ladze-Leont iyev theory can be 
applied in principle for describing quasi-stabilized tur- 
bulent channel flows with uniform injection up to such 
rates when the 'non-viscous'  solution can be used and 
a relation for predicting the friction function can be 
obtained. 

The system of equations (1) can be used in practice 
for calculating velocity profiles only if  the static 
pressure distribution along the channel is known. In 
a general case, it is unknown and, in its turn, according 
to equation (3), it depends on velocity distribution. 
To calculate the velocity profile in a channel with 
injection, it is suggested that one uses the following 
approximated relation : 

co= mo--(Wo--~o,)( bb~+ l ) (10) 

where ogn is the velocity distribution for a 'non-viscous'  
flow. This relation was constructed on the basis of  the 
solutions corresponding to the flow in an impermeable 
channel and with strong injection, and also on the 
basis of  the complex b2/(b2 + I ) introduced above. Fig- 
ure 3 illustrates the comparison between equation (10) 

and experimental data. Relations (3), (8) and (10) 
represent a closed system permitting one to calculate 
the basic hydrodynamic characteristics of  a quasi- 
stabilized turbulent flow in channels with injection. 
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